• Home  
  • Mechanism of conductance control and neurosteroid binding in NMDA receptors
- Health

Mechanism of conductance control and neurosteroid binding in NMDA receptors

Hille, B. Ion Channels of Excitable Membranes 3rd edn (Sinauer, 2001). Jahr, C. E. & Stevens, C. F. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325, 522–525 (1987). Article  ADS  PubMed  Google Scholar  Cull-Candy, S. G. & Usowicz, M. M. Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325, […]

  • Hille, B. Ion Channels of Excitable Membranes 3rd edn (Sinauer, 2001).

  • Jahr, C. E. & Stevens, C. F. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325, 522–525 (1987).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cull-Candy, S. G. & Usowicz, M. M. Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325, 525–528 (1987).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schneggenburger, R. & Ascher, P. Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron 18, 167–177 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Banke, T. G. & Traynelis, S. F. Activation of NR1/NR2B NMDA receptors. Nat. Neurosci. 6, 144–152 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Popescu, G. & Auerbach, A. Modal gating of NMDA receptors and the shape of their synaptic response. Nat. Neurosci. 6, 476–483 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Hansen, K. B. et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73, 298–487 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karakas, E. & Furukawa, H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C. H. et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. X. & Furukawa, H. Dissecting diverse functions of NMDA receptors by structural biology. Curr. Opin. Struct. Biol. 54, 34–42 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mony, L. & Paoletti, P. Mechanisms of NMDA receptor regulation. Curr. Opin. Neurobiol. 83, 102815 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, C. & Tajima, N. Structural insights into NMDA receptor pharmacology. Biochem. Soc. Trans. 51, 1713–1731 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, E., Zhang, J., Zhang, J. & Zhu, S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr. Opin. Neurobiol. 83, 102806 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hansen, K. B. et al. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150, 1081–1105 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratner, M. H., Kumaresan, V. & Farb, D. H. Neurosteroid actions in memory and neurologic/neuropsychiatric disorders. Front. Endocrinol. 10, 169 (2019).

    Article 

    Google Scholar
     

  • Hanson, J. E. et al. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 49, 51–66 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zorumski, C. F. et al. New directions in neurosteroid therapeutics in neuropsychiatry. Neurosci. Biobehav. Rev. 172, 106119 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Hrcka Krausova, B. et al. Site of action of brain neurosteroid pregnenolone sulfate at the N-methyl-D-aspartate receptor. J. Neurosci. 40, 5922 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perszyk, R. E. et al. Biased modulators of NMDA receptors control channel opening and ion selectivity. Nat. Chem. Biol. 16, 188–196 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, T. H. et al. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 632, 209–217 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ullman, E. Z. et al. Mechanisms of action underlying conductance-modifying positive allosteric modulators of the NMDA receptor. Mol. Pharmacol. 106, 334–353 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Paul, S. M. et al. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J. Neurosci. 33, 17290–17300 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, F. S., Gibbs, T. T. & Farb, D. H. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol. Pharmacol. 40, 333–336 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Fritzemeier, R. G. et al. Thienopyrimidinone derivatives as a GluN2B/C/D biased, positive allosteric modulator of the N-methyl-d-aspartate receptor. J. Med. Chem. 68, 9303–9322 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Premkumar, L. S., Qin, F. & Auerbach, A. Subconductance States of a mutant NMDA receptor channel kinetics, calcium, and voltage dependence. J. Gen. Physiol. 109, 181–189 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern, P., Béhé, P., Schoepfer, R. & Colquhoun, D. Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc. R. Soc. Lond. B 250, 271–277 (1997).

    ADS 

    Google Scholar
     

  • Banke, T. G., Dravid, S. M. & Traynelis, S. F. Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J. Neurosci. 25, 42–51 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z. & Gibb, A. J. Mg2+ block properties of triheteromeric GluN1–GluN2B–GluN2D NMDA receptors on neonatal rat substantia nigra pars compacta dopaminergic neurones. J. Physiol. 592, 2059–2078 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, H. et al. Structural basis for channel gating and blockade in tri-heteromeric GluN1-2B-2D NMDA receptor. Neuron https://doi.org/10.1016/j.neuron.2025.01.013 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, T. H., Tajima, N., Romero-Hernandez, A. & Furukawa, H. Structural basis of functional transitions in mammalian NMDA receptors. Cell 182, 357–371 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tajima, N. et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534, 63–68 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graphics 14, 354–360 (1996).

    Article 

    Google Scholar
     

  • Amin, J. B. et al. Two gates mediate NMDA receptor activity and are under subunit-specific regulation. Nat. Commun. 14, 1623 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549, 60–65 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gangwar, S. P. et al. Kainate receptor channel opening and gating mechanism. Nature 630, 762–768 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson, G. T., Kamboj, S. K. & Cull-Candy, S. G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. A transmembrane accessory subunit that modulates kainate-type glutamate receptors. Neuron 61, 385–396 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, J., Beck, C., Kuner, T., Premkumar, L. S. & Wollmuth, L. P. DRPEER: a motif in the extracellular vestibule conferring high Ca2+ flux rates in NMDA receptor channels. J. Neurosci. 22, 10209–10216 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perszyk, R. E. et al. Hodgkin-Huxley-Katz Prize Lecture: genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. J. Physiol. https://doi.org/10.1113/JP278086 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yelshanskaya, M. V., Patel, D. S., Kottke, C. M., Kurnikova, M. G. & Sobolevsky, A. I. Opening of glutamate receptor channel to subconductance levels. Nature 605, 172–178 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coombs, I. D. & Cull-Candy, S. G. Single-channel mechanisms underlying the function, diversity and plasticity of AMPA receptors. Neuropharmacology 198, 108781 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Benveniste, M. & Mayer, M. L. Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys. J. 59, 560–573 (1991).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hale, W. D., Huganir, R. L. & Twomey, E. C. Architecture, activation, and conformational plasticity in the GluA4 AMPA receptor. Preprint at bioRxiv https://doi.org/10.1101/2025.06.12.659357 (2025).

  • Furukawa, H., Simorowski, N. & Michalski, K. Effective production of oligomeric membrane proteins by EarlyBac-insect cell system. Methods Enzymol. 653, 3–19 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chou, T. H. et al. Structural insights into binding of therapeutic channel blockers in NMDA receptors. Nat. Struct. Mol. Biol. 29, 507–518 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, C. A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. 286, 417–445 (1979).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jatzke, C., Hernandez, M. & Wollmuth, L. P. Extracellular vestibule determinants of Ca2+ influx in Ca2+-permeable AMPA receptor channels. J. Physiol. 549, 439–452 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc.Bioinform. 2016, 5.6.1–5.6.37 (2016).


    Google Scholar
     

  • Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78, 1950–1958 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joung, I. S. & Cheatham, T. E. III Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article 
    ADS 

    Google Scholar
     

  • First Appeared on
    Source link

    Leave a comment

    Your email address will not be published. Required fields are marked *

    isenews.com  @2024. All Rights Reserved.