• Home  
  • Cryogenic X-ray photoelectron spectroscopy for battery interfaces
- Science

Cryogenic X-ray photoelectron spectroscopy for battery interfaces

Oyakhire, S. T., Gong, H., Cui, Y., Bao, Z. & Bent, S. F. An X-ray photoelectron spectroscopy primer for solid electrolyte interphase characterization in lithium metal anodes. ACS Energy Lett. 7, 2540–2546 (2022). CAS  Google Scholar  Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for […]

  • Oyakhire, S. T., Gong, H., Cui, Y., Bao, Z. & Bent, S. F. An X-ray photoelectron spectroscopy primer for solid electrolyte interphase characterization in lithium metal anodes. ACS Energy Lett. 7, 2540–2546 (2022).

    CAS 

    Google Scholar
     

  • Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7, 3270–3275 (2022).

    CAS 

    Google Scholar
     

  • Bard, A. J. et al. ChemInform Abstract: the electrode/electrolyte interface – a status report. J. Phys. Chem. 97, 7147–7173 (1993).

    CAS 

    Google Scholar
     

  • Yu, X. & Manthiram, A. Electrode-electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 11, 527–543 (2018).

    CAS 

    Google Scholar
     

  • Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Leung, K. & Qi, Y. Computational exploration of the Li-electrode|electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer. Acc. Chem. Res. 49, 2363–2370 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Winter, M. The solid electrolyte interphase – the most important and the least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem. 223, 1395–1406 (2009).

    CAS 

    Google Scholar
     

  • Dedryvère, R. et al. XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode. J. Electrochem. Soc. 152, A689 (2005).


    Google Scholar
     

  • Kanamura, K., Tamura, H., Shiraishi, S. & Takehara, Z.-I. XPS analysis for the lithium surface immersed in γ-butyrolactone containing various salts. J. Electrochem. Soc. 40, 913–921 (1995).

    CAS 

    Google Scholar
     

  • Andersson, A. M. & Edström, K. Chemical composition and morphology of the elevated temperature SEI on graphite. J. Electrochem. Soc. 148, A1100 (2001).

    CAS 

    Google Scholar
     

  • Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Steinrück, H. G. et al. Interfacial speciation determines interfacial chemistry: X-ray-induced lithium fluoride formation from water-in-salt electrolytes on solid surfaces. Angew. Chem. Int. Ed. 59, 23180–23187 (2020).


    Google Scholar
     

  • Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Cryogenic electron microscopy for energy materials. Acc. Chem. Res. 54, 3505–3517 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Bai, X., McMullan, G. & Scheres, S. H. W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci 40, 49–57 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Dubochet, J. On the development of electron cryo-microscopy (Nobel Lecture). Angew. Chem. Int. Ed. 130, 10842–10846 (2018).


    Google Scholar
     

  • Henderson, R. From electron crystallography to single particle CryoEM (Nobel Lecture). Angew. Chem. Int. Ed. 130, 10804–10825 (2018).


    Google Scholar
     

  • Taylor, K. A. & Glaeser, R. M. Electron diffraction of frozen, hydrated protein crystals. Science 186, 1036–1037 (1974).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McDowall, A. W. et al. Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 131, 1–9 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19, 147–178 (1986).

    CAS 

    Google Scholar
     

  • Fernandez-Moran, H. Cell-membrane ultrastructure: low-temperature electron microscopy and X-ray diffraction studies of lipoprotein components in lamellar systems. Circulation 26, 1039–1065 (1962).

    CAS 
    PubMed 

    Google Scholar
     

  • Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    CAS 

    Google Scholar
     

  • Li, T., Zhang, X.-Q., Shi, P. & Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019).

    CAS 

    Google Scholar
     

  • Wang, C., Meng, Y. S. & Xu, K. Perspective—fluorinating Interphases. J. Electrochem. Soc. 166, A5184–A5186 (2019).

    CAS 

    Google Scholar
     

  • Hobold, G. M., Wang, C., Steinberg, K., Li, Y. & Gallant, B. M. High lithium oxide prevalence in the lithium solid–electrolyte interphase for high Coulombic efficiency. Nat. Energy 9, 580–591 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Kim, M. S. et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arkel, A. E., Spitsbergen, U. & Heyding, R. D. Note on the volatility of lithium oxide. Can. J. Chem. 33, 446–447 (1955).

    ADS 

    Google Scholar
     

  • Kudo, H., Wu, C. H. & Ihle, H. R. Mass-spectrometric study of the vaporization of Li2O(s) and thermochemistry of gaseous LiO, Li2O, Li3O, and Li2O2. J. Nucl. Mater. 78, 380–389 (1978).

    ADS 
    CAS 

    Google Scholar
     

  • Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979).

    CAS 

    Google Scholar
     

  • D’Acunto, G. et al. Atomic layer deposition of hafnium oxide on InAs: insight from time-resolved in situ studies. ACS Appl. Electron Mater 2, 3915–3922 (2020).


    Google Scholar
     

  • Walther, T. in Microscopy Methods in Nanomaterials Characterization 105–134 (Elsevier, 2017).

  • García De Abajo, F. J. & Di Giulio, V. Optical excitations with electron beams: challenges and opportunities. ACS Photon. 8, 945–974 (2021).


    Google Scholar
     

  • Jagger, B. & Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023).

    CAS 

    Google Scholar
     

  • He, M., Guo, R., Hobold, G. M., Gao, H. & Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl Acad. Sci. USA 117, 73–79 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. S. et al. Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 17, 3168–3180 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 15, 72–101 (1904).


    Google Scholar
     

  • Oyakhire, S. T. et al. Proximity matters: interfacial solvation dictates solid electrolyte interphase composition. Nano Lett. 23, 7524–7531 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oyakhire, S. T. & Bent, S. F. Interfacial engineering of lithium metal anodes: what is left to uncover? Energy Adv. 3, 108–122 (2023).


    Google Scholar
     

  • Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208 (1997).

    CAS 

    Google Scholar
     

  • Cui, Z. et al. Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries. Nat. Commun. 15, 2033 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Recovery of isolated lithium through discharged state calendar ageing. Nature 626, 306–312 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Otto, S.-K. et al. In-depth characterization of lithium-metal surfaces with XPS and ToF-SIMS: toward better understanding of the passivation layer. Chem. Mater. 33, 859–867 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Baer, D. R. XPS guide: charge neutralization and binding energy referencing for insulating samples. J. Vac. Sci. Technol. A 38, 031204 (2020).

    CAS 

    Google Scholar
     

  • Greczynski, G. & Hultman, L. Compromising science by ignorant instrument calibration—need to revisit half a century of published XPS data. Angew. Chem. Int. Ed. 59, 5002–5006 (2020).

    CAS 

    Google Scholar
     

  • Liu, Q. et al. A fluorinated cation introduces new interphasial chemistries to enable high-voltage lithium metal batteries. Nat. Commun. 14, 3678 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, S. et al. High safety and cycling stability of ultrahigh energy lithium ion batteries. Cell Rep. Phys. Sci. 2, 100584 (2021).

    CAS 

    Google Scholar
     

  • Wood, K. N. & Teeter, G. XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl. Energy Mater. 1, 4493–4504 (2018).

    CAS 

    Google Scholar
     

  • Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017).

    PubMed 

    Google Scholar
     

  • Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    CAS 

    Google Scholar
     

  • Templeton, D. M. et al. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC recommendations 2000). Pure Appl. Chem. 72, 1453–1470 (2009).


    Google Scholar
     

  • Feldmann, J. et al. Microwave-assisted sample preparation for element speciation. in Microwave-Assisted Sample Preparation for Trace Element Determination 281–312 (Elsevier, 2014).

  • Greczynski, G. & Hultman, L. Towards reliable X-ray photoelectron spectroscopy: sputter-damage effects in transition metal borides, carbides, nitrides, and oxides. Appl. Surf. Sci. 542, 148599 (2021).

    CAS 

    Google Scholar
     

  • First Appeared on
    Source link

    Leave a comment

    Your email address will not be published. Required fields are marked *

    isenews.com  @2024. All Rights Reserved.