• Home  
  • A global coral phylogeny reveals resilience and vulnerability through deep time
- Science

A global coral phylogeny reveals resilience and vulnerability through deep time

Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007). Article  ADS  CAS  PubMed  Google Scholar  Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008). Article  ADS  CAS  PubMed  Google Scholar  Knowlton, N. Coral […]

  • Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Knowlton, N. Coral reef biodiversity-habitat size matters. Science 292, 1493–1495 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mellin, C. et al. Cumulative risk of future bleaching for the world’s coral reefs. Sci. Adv. 10, eadn9660 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleypas, J. A. et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–120 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gault, J. A., Bentlage, B., Huang, D. & Kerr, A. M. Lineage-specific variation in the evolutionary stability of coral photosymbiosis. Sci. Adv. 7, eabh4243 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stolarski, J. et al. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol. Biol. 11, 316 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arrigoni, R. et al. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. Mol. Ecol. Resour. 17, 1054–1071 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quattrini, A. M. et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat. Ecol. Evol. 4, 1531–1538 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Vasseur, R. et al. Major coral extinctions during the early Toarcian global warming event. Glob. Planet. Change 207, 103647 (2021).

    Article 

    Google Scholar
     

  • Jacobs, D. K. & Lindberg, D. R. Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proc. Natl Acad. Sci. USA 95, 9396–9401 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cairns, S. D. Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull. Mar. Sci. 81, 311–322b (2007).


    Google Scholar
     

  • Roberts, J. M., Wheeler, A., Freiwald, A. & Cairns, S. (eds) Cold-Water Corals: The Biology and Geology of Deep-Sea Coral Habitats (Cambridge University Press, 2009).

  • Orejas, C. et al. Madrepora oculata forms large frameworks in hypoxic waters off Angola (SE Atlantic). Sci. Rep. 11, 15170 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campoy, A. N. et al. The origin and correlated evolution of symbiosis and coloniality in scleractinian corals. Front. Mar. Sci. 7, 461 (2020).

    Article 

    Google Scholar
     

  • McFadden, C. S. et al. Phylogenomics, origin, and diversification of Anthozoans (phylum Cnidaria). Syst. Biol. 70, 635–647 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Frankowiak, K. et al. Photosymbiosis and the expansion of shallow-water corals. Sci. Adv. 2, e1601122 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ries, J. B. Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7, 2795–2849 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, Y. et al. Phylogenomic analyses provide insights into primate evolution. Science 380, 913–924 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuntini, A. R. et al. Phylogenomics and the rise of the angiosperms. Nature 629, 843–850 (2024).

  • Erwin, D. H., Valentine, J. W. & Sepkoski, J. J. Jr A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41, 1177–1186 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scrutton, C. T. The Palaeozoic corals, I: origins and relationships. Proc. York. Geol. Soc. 51, 177–208 (1997).

    Article 

    Google Scholar
     

  • Scrutton, C. T. & Clarkson, E. N. K. A new scleractinian-like coral from the Ordovician of the Southern Uplands, Scotland. Palaeontology 34, 179–194 (1991).


    Google Scholar
     

  • Ezaki, Y. The Permian coral Numidiaphyllum: new insights into anthozoan phylogeny and Triassic scleractinian origins. Palaeontology 40, 1–14 (1997).


    Google Scholar
     

  • Ezaki, Y. Paleozoic Scleractinia: progenitors or extinct experiments? Paleobiology 24, 227–234 (1998).

    Article 

    Google Scholar
     

  • Barbeitos, M. S., Romano, S. L. & Lasker, H. R. Repeated loss of coloniality and symbiosis in scleractinian corals. Proc. Natl Acad. Sci. USA 107, 11877–11882 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campoy, A. N., Rivadeneira, M. M., Hernández, C. E., Meade, A. & Venditti, C. Deep-sea origin and depth colonization associated with phenotypic innovations in scleractinian corals. Nat. Commun. 14, 7458 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindner, A., Cairns, S. D. & Cunningham, C. W. From offshore to onshore: multiple origins of shallow-water corals from deep-sea ancestors. PLoS ONE 3, e2429 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horowitz, J. et al. Bathymetric evolution of black corals through deep time. Proc. R. Soc. B 290, 20231107 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, K. M. & Kump, L. R. Oceanic euxinia in Earth history: causes and consequences. Annu. Rev. Earth Planet. Sci. 36, 251–288 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Buhl-Mortensen, L., Mortensen, P. B., Armsworthy, S. & Jackson, D. Field observations of Flabellum spp. and laboratory study of the behavior and respiration of Flabellum alabastrum. Bull. Mar. Sci. 81, 543–552 (2007).


    Google Scholar
     

  • Veron, J. E. N. Corals in Space and Time: the Biogeography and Evolution of the Scleractinia (Cornell Univ. Press, 1995).

  • Ying, H. et al. Comparative genomics reveals the distinct evolutionary trajectories of the robust and complex coral lineages. Genome Biol. 19, 175 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanley, Jr. G. D. & Fautin, D. G. The origins of modern corals. Science 291, 1913–1914 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chadwick, N. E. & Adams, C. in Coelenterate Biology: Recent Research on Cnidaria and Ctenophora (eds Williams, R. B. et al.) 263–269 (Springer, 1991).

  • Daly, M. et al. The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668, 127–182 (2007).

  • Minter, N. J. et al. Early bursts of diversification defined the faunal colonization of land. Nat. Ecol. Evol. 1, 0175 (2017).

    Article 

    Google Scholar
     

  • Judd, E. J. et al. A 485-million-year history of Earth’s surface temperature. Science 385, eadk3705 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hongzhen, W. & Jianqiang, C. Late Ordovician and early Silurian rugose coral biogeography and world reconstruction of palaeocontinents. Palaeogeogr. Palaeoclimatol. Palaeoecol. 86, 3–21 (1991).

    Article 

    Google Scholar
     

  • Fedorowski, J. Extinction of Rugosa and Tabulata near the Permian Triassic boundary. Acta Palaeont. Polonica. 34, 47–70 (1989).


    Google Scholar
     

  • Stanley, G. D. Jr. The evolution of modern corals and their early history. Earth Sci. Rev. 60, 195–225 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Roniewicz, E. & Morycowa, E. Evolution of the Scleractinia in the light of microstructural data. Cour. Forsch. Senckenberg 164, 233–240 (1993).


    Google Scholar
     

  • Anagnostou, E., Huang, K. F., You, C. F., Sikes, E. L. & Sherrell, R. M. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: evidence of physiological pH adjustment. Earth Planet. Sci. Lett. 349, 251–260 (2012).

    Article 
    ADS 

    Google Scholar
     

  • McCulloch, M. et al. Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Plusquellec, Y., Webb, G. E. & Hoeksema, B. W. Automobility in Tabulata, Rugosa, and extant scleractinian analogues: stratigraphic and paleogeographic distribution of Paleozoic mobile corals. J. Paleontol. 73, 985–1001 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Hoeksema, B. W. & Bongaerts, P. Mobility and self-righting by a free-living mushroom coral through pulsed inflation. Mar. Biodivers. 46, 521–524 (2016).

    Article 

    Google Scholar
     

  • Sentoku, A., Tokuda, Y. & Ezaki, Y. Burrowing hard corals occurring on the sea floor since 80 million years ago. Sci. Rep. 6, 24355 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peijnenburg, K. T. et al. The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle. Proc. Natl Acad. Sci. USA 117, 25609–25617 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitahara, M. V. Species richness and distribution of azooxanthellate Scleractinia in Brazil. Bull. Mar. Sci. 81, 497–518 (2007).


    Google Scholar
     

  • Capel, K. C. et al. Atlantia, a new genus of Dendrophylliidae (Cnidaria, Anthozoa, Scleractinia) from the eastern Atlantic. PeerJ 8, e8633 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitahara, M. & Cairns, S. Tropical Deep-Sea Benthos Vol. 32 (Publications Scientifiques du Muséum, 2021).

  • Cairns, S. D. The Marine Fauna of New Zealand: Scleractinia (Cnidaria: Anthozoa) (NIWA, 1995).

  • Wong, J. S. Y. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Seiblitz, I. G. et al. Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: insights from mitochondrial and nuclear phylogenomics. Mol. Phylogenet. Evol. 175, 107565 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quattrini, A. M. et al. Universal target-enrichment baits for anthozoan (Cnidaria) phylogenomics: new approaches to longstanding problems. Mol. Ecol. Resour. 18, 281–295 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cowman, P. F. et al. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Mol. Phylogenet. Evol. 153, 106944 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Quek, Z. B. R., Jain, S. S., Neo, M. L., Rouse, G. W. & Huang, D. Transcriptome-based target-enrichment baits for stony corals (Cnidaria: Anthozoa: Scleractinia). Mol. Ecol. Resour. 20, 807–818 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faircloth, B. C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duchêne, D. A., Mather, N., van der Wal, C. & Ho, S. Y. W. Excluding loci with substitution saturation improves inferences from phylogenomic data. Syst. Biol. 71, 676–689 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C. & Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60, 685–699 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 15–30 (2018).

    Article 

    Google Scholar
     

  • Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26, 1669–1670 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mai, U. & Mirarab, S. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genom. 19, 23–40 (2018).

    Article 

    Google Scholar
     

  • Wells, J. W. in Treatise on Invertebrate Paleontology, Part F. Coelenterata (ed. Moore, R. C.) F328–F444 (Geological Society of America, 1956).

  • Romano, S. L. & Palumbi, S. R. Evolution of scleractinian corals inferred from molecular systematics. Science 271, 640–642 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kitahara, M. V. et al. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS ONE 5, e11490 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, D., Licuanan, W. Y., Baird, A. H. & Fukami, H. Cleaning up the ‘Bigmessidae’: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol. Biol. 11, 37 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stolarski, J. et al. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change. Sci. Rep. 6, 27579 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janiszewska, K. et al. Microstructural disparity between basal micrabaciids and other scleractinia: new evidence from Neogene Stephanophyllia. Lethaia 48, 417–428 (2015).

    Article 

    Google Scholar
     

  • Carbone, F., Matteucci, R., Rosen, B. R. & Russo, A. Recent coral facies of the Indian Ocean coast of Somalia with an interim check list of corals. Facies 30, 1–13 (1994).

    Article 

    Google Scholar
     

  • Vecsei, A. & Moussavian, E. Paleocene reefs on the Maiella platform margin, Italy: an example of the effects of the Cretaceous/Tertiary boundary events on reefs and carbonate platforms. Facies 36, 123–139 (1997).

    Article 

    Google Scholar
     

  • Stolarski, J. & Vertino, A. First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland. Facies 53, 67–78 (2007).

    Article 

    Google Scholar
     

  • Squires, D. F. The Cretaceous and Tertiary Corals of New Zealand Paleontological Bulletin 29 (New Zealand Geological Survey, 1958).

  • Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. USA 116, 7916–7925 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanderson, M. J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19, 101–109 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, J. W. & Smith, S. A. The past sure is tense: on interpreting phylogenetic divergence time estimates. Syst. Biol. 67, 340–353 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tribble, C. M. et al. RevGadgets: an R package for visualizing Bayesian phylogenetic analyses from RevBayes. Methods Ecol. Evol. 13, 314–323 (2022).

    Article 

    Google Scholar
     

  • Höhna, S. et al. A Bayesian approach for estimating branch-specific speciation and extinction rates. Preprint at BioRxiv https://doi.org/10.1101/555805 (2019).

  • Vaga, C. F. et al. Data for ‘A global coral phylogeny reveals resilience and vulnerability through deep time’. Figshare https://doi.org/10.6084/m9.figshare.29242487 (2025).

  • Bosellini, F. R., Papazzoni, C., A. & Vescogni, A. Exceptional development of dissepimental coenosteum in the new Eocene scleractinian coral genus Nancygyra (Ypresian, Monte Postale, NE Italy). Boll. Soc. Paleontol. Ital. 59, 291–298 (2020).

  • Stolarski, J. On Cretaceous Stephanocyathus (Scleractinia) from the Tatra Mts. Acta Palaeontol. Pol. 35, 31–39 (1990).

  • First Appeared on
    Source link

    Leave a comment

    Your email address will not be published. Required fields are marked *

    isenews.com  @2024. All Rights Reserved.