• Home  
  • Sensory expectations shape neural population dynamics in motor circuits
- Health

Sensory expectations shape neural population dynamics in motor circuits

Churchland, M. M. & Shenoy, K. V. Preparatory activity and the expansive null-space. Nat. Rev. Neurosci. 25, 213–236 (2024). Article  PubMed  Google Scholar  Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013). Article  PubMed  Google Scholar  Codol, O., Michaels, J. […]

  • Churchland, M. M. & Shenoy, K. V. Preparatory activity and the expansive null-space. Nat. Rev. Neurosci. 25, 213–236 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Codol, O., Michaels, J. A., Kashefi, M., Pruszynski, J. A. & Gribble, P. L. MotorNet, a Python toolbox for controlling differentiable biomechanical effectors with artificial neural networks. eLife 12, RP88591 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanji, J. & Evarts, E. V. Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J. Neurophysiol. 39, 1062–1068 (1976).

    Article 
    PubMed 

    Google Scholar
     

  • Churchland, M. M., Santhanam, G. & Shenoy, K. V. Preparatory activity in premotor and motor cortex reflects the speed of the upcoming reach. J. Neurophysiol. 96, 3130–3146 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Messier, J. & Kalaska, J. F. Covariation of primate dorsal premotor cell activity with direction and amplitude during a memorized-delay reaching task. J. Neurophysiol. 84, 152–165 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Weinrich, M., Wise, S. P. & Mauritz, K. H. A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107, 385–414 (1984).

    Article 
    PubMed 

    Google Scholar
     

  • Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for motor planning and movement. Nature 519, 51–56 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Riehle, A. & Requin, J. Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J. Neurophysiol. 61, 534–549 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Cisek, P. & Kalaska, J. F. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45, 801–814 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Churchland, M. M., Afshar, A. & Shenoy, K. V. A central source of movement variability. Neuron 52, 1085–1096 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riehle, A. & Requin, J. The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex. Behav. Brain Res. 53, 35–49 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Churchland, M. M., Yu, B. M., Ryu, S. I., Santhanam, G. & Shenoy, K. V. Neural variability in premotor cortex provides a signature of motor preparation. J. Neurosci. 26, 3697–3712 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afshar, A. et al. Single-trial neural correlates of arm movement preparation. Neuron 71, 555–564 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaels, J. A., Dann, B., Intveld, R. W. & Scherberger, H. Predicting reaction time from the neural state space of the premotor and parietal grasping network. J. Neurosci. 35, 11415–11432 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Churchland, M. M. & Shenoy, K. V. Delay of movement caused by disruption of cortical preparatory activity. J. Neurophysiol. 97, 348–359 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532, 459–464 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logiaco, L., Abbott, L. F. & Escola, S. Thalamic control of cortical dynamics in a model of flexible motor sequencing. Cell Rep. 35, 109090 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaels, J. A., Schaffelhofer, S., Agudelo-Toro, A. & Scherberger, H. A goal-driven modular neural network predicts parietofrontal neural dynamics during grasping. Proc. Natl Acad. Sci. USA 117, 32124–32135 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Crevecoeur, F. & Scott, S. H. Priors engaged in long-latency responses to mechanical perturbations suggest a rapid update in state estimation. PLoS Comput. Biol. 9, e1003177 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruszynski, J. A. & Scott, S. H. Optimal feedback control and the long-latency stretch response. Exp. Brain Res. 218, 341–359 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hatsopoulos, N. G. & Suminski, A. J. Sensing with the motor cortex. Neuron 72, 477–487 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruszynski, J. A. et al. Primary motor cortex underlies multi-joint integration for fast feedback control. Nature 478, 387–390 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evarts, E. V. & Tanji, J. Gating of motor cortex reflexes by prior instruction. Brain Res. 71, 479–494 (1974).

    Article 
    PubMed 

    Google Scholar
     

  • Pruszynski, J. A., Omrani, M. & Scott, S. H. Goal-dependent modulation of fast feedback responses in primary motor cortex. J. Neurosci. 34, 4608–4617 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omrani, M., Murnaghan, C. D., Pruszynski, J. A. & Scott, S. H. Distributed task-specific processing of somatosensory feedback for voluntary motor control. eLife 5, e13141 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picard, N. & Smith, A. M. Primary motor cortical responses to perturbations of prehension in the monkey. J. Neurophysiol. 68, 1882–1894 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Evarts, E. V. & Fromm, C. Sensory responses in motor cortex neurons during precise motor control. Neurosci. Lett. 5, 267–272 (1977).

    Article 
    PubMed 

    Google Scholar
     

  • Wolpaw, J. R. Amplitude of responses to perturbation in primate sensorimotor cortex as a function of task. J. Neurophysiol. 44, 1139–1147 (1980).

    Article 
    PubMed 

    Google Scholar
     

  • Reschechtko, S. & Pruszynski, J. A. Stretch reflexes. Curr. Biol. 30, R1025–R1030 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cheney, P. D. & Fetz, E. E. Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey. J. Physiol. 349, 249–272 (1984).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruszynski, J. A., Kurtzer, I., Lillicrap, T. P. & Scott, S. H. Temporal evolution of automatic gain-scaling. J. Neurophysiol. 102, 992–1003 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lara, A. H., Elsayed, G. F., Zimnik, A. J., Cunningham, J. P. & Churchland, M. M. Conservation of preparatory neural events in monkey motor cortex regardless of how movement is initiated. eLife 7, e31826 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaufman, M. T. et al. The largest response component in the motor cortex reflects movement timing but not movement type. eNeuro 3, ENEURO.0085-16.2016 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trautmann, E. M. et al. Large-scale high-density brain-wide neural recording in nonhuman primates. Nat. Neurosci. 28, 1562–1575 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darian-Smith, C., Tan, A. & Edwards, S. Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. J. Comp. Neurol. 410, 211–234 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Horne, M. K. & Tracey, D. J. The afferents and projections of the ventroposterolateral thalamus in the monkey. Exp. Brain Res. 36, 129–141 (1979).

    ADS 
    PubMed 

    Google Scholar
     

  • Morel, A., Liu, J., Wannier, T., Jeanmonod, D. & Rouiller, E. M. Divergence and convergence of thalamocortical projections to premotor and supplementary motor cortex: a multiple tracing study in the macaque monkey: Thalamocortical connections of premotor cortex. Eur. J. Neurosci. 21, 1007–1029 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Rouiller, E. M., Liang, F., Babalian, A., Moret, V. & Wiesendanger, M. Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J. Comp. Neurol. 345, 185–213 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mauritz, K. H. & Wise, S. P. Premotor cortex of the rhesus monkey: neuronal activity in anticipation of predictable environmental events. Exp. Brain Res. 61, 229–244 (1986).

    Article 
    PubMed 

    Google Scholar
     

  • Glaser, J. I., Perich, M. G., Ramkumar, P., Miller, L. E. & Kording, K. P. Population coding of conditional probability distributions in dorsal premotor cortex. Nat. Commun. 9, 1788 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rickert, J., Riehle, A., Aertsen, A., Rotter, S. & Nawrot, M. P. Dynamic encoding of movement direction in motor cortical neurons. J. Neurosci. 29, 13870–13882 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastian, A., Schöner, G. & Riehle, A. Preshaping and continuous evolution of motor cortical representations during movement preparation. Eur. J. Neurosci. 18, 2047–2058 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Smoulder, A. L. et al. A neural basis of choking under pressure. Neuron 112, 3424–3433.e8 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Selen, L. P. J., Shadlen, M. N. & Wolpert, D. M. Deliberation in the motor system: reflex gains track evolving evidence leading to a decision. J. Neurosci. 32, 2276–2286 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Turecek, J. & Ginty, D. D. Coding of self and environment by Pacinian neurons in freely moving animals. Neuron 112, 3267–3277.e6 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimitriou, M. & Edin, B. B. Human muscle spindles act as forward sensory models. Curr. Biol. 20, 1763–1767 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, L. P. & Rao, R. P. N. Predictive coding theories of cortical function. in Oxford Research Encyclopedia of Neuroscience https://doi.org/10.1093/acrefore/9780190264086.013.328 (2022).

  • Richter, D., Kietzmann, T. C. & de Lange, F. P. High-level visual prediction errors in early visual cortex. PLoS Biol. 22, e3002829 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouhani, N. & Niv, Y. Signed and unsigned reward prediction errors dynamically enhance learning and memory. eLife 10, e61077 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. S., Sarma, A. A., Sejnowski, T. J. & Doyle, J. C. Internal feedback in the cortical perception-action loop enables fast and accurate behavior. Proc. Natl Acad. Sci. USA 120, e2300445120 (2023).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Miall, R. C., Christensen, L. O. D., Cain, O. & Stanley, J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 5, e316 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diedrichsen, J., Criscimagna-Hemminger, S. E. & Shadmehr, R. Dissociating timing and coordination as functions of the cerebellum. J. Neurosci. 27, 6291–6301 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hore, J. & Vilis, T. Loss of set in muscle responses to limb perturbations during cerebellar dysfunction. J. Neurophysiol. 51, 1137–1148 (1984).

    Article 
    PubMed 

    Google Scholar
     

  • Scott, S. H. Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J. Neurosci. Methods 89, 119–127 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Matthews, P. B. Observations on the automatic compensation of reflex gain on varying the pre-existing level of motor discharge in man. J. Physiol. 374, 73–90 (1986).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruszynski, J. A., Kurtzer, I. & Scott, S. H. Rapid motor responses are appropriately tuned to the metrics of a visuospatial task. J. Neurophysiol. 100, 224–238 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Jung, B. et al. A comprehensive macaque fMRI pipeline and hierarchical atlas. Neuroimage 235, 117997 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Seidlitz, J. et al. A population MRI brain template and analysis tools for the macaque. Neuroimage 170, 121–131 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Reveley, C. et al. Three-dimensional digital template atlas of the macaque brain. Cereb. Cortex 27, 4463–4477 (2017).

    PubMed 

    Google Scholar
     

  • Hartig, R. et al. The Subcortical Atlas of the Rhesus Macaque (SARM) for neuroimaging. Neuroimage 235, 117996 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hirai, T. & Jones, E. G. A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res. Rev. 14, 1–34 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Boussard, J., Varol, E., Lee, H. D., Dethe, N. & Paninski, L. Three-dimensional spike localization and improved motion correction for Neuropixels recordings. Preprint at bioRxiv https://doi.org/10.1101/2021.11.05.467503 (2021).

  • Varol, E. et al. in ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing 1085–1089 (IEEE, 2021).

  • Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pachitariu, M., Sridhar, S., Pennington, J. & Stringer, C. Spike sorting with Kilosort4. Nat. Methods 21, 914–921 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trautmann, E. M. et al. Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308.e4 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mussa-Ivaldi, F. A., Hogan, N. & Bizzi, E. Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5, 2732–2743 (1985).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thelen, D. G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125, 70–77 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Kistemaker, D. A., Wong, J. D. & Gribble, P. L. The central nervous system does not minimize energy cost in arm movements. J. Neurophysiol. 104, 2985–2994 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proc. 13th International Conference on Artificial Intelligence and Statistics 249–256 (JMLR, 2010).

  • Hu, W., Xiao, L. & Pennington, J. Provable benefit of orthogonal initialization in optimizing deep linear networks. Preprint at https://doi.org/10.48550/arXiv.2001.05992 (2020).

  • Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2014).

  • Scott, M. & Su-In, L. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).


    Google Scholar
     

  • Shapley, L. S. in Contribution to the Theory of Games (eds Kuhn, H. & Tucker, A.) 307–317 (Princeton Univ. Press, 1953).

  • Diedrichsen, J. & Kriegeskorte, N. Representational models: a common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS Comput. Biol. 13, e1005508 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaels, J. A. & Pruszynski, J. A. Data from: Sensory expectations shape neural population dynamics in motor circuits [Dataset]. Dryad https://doi.org/10.5061/dryad.0vt4b8hbr (2025).

  • First Appeared on
    Source link

    Leave a comment

    Your email address will not be published. Required fields are marked *

    isenews.com  @2024. All Rights Reserved.